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A previous study revealed that only maximization of the efficiency function, from 
among a large class of mean field moments, results in both a logarithmic law and a 
velocity defect law in turbulent Poiseuille channel flow. The efficiency function, 8, is 
the product of a drag coefficient and the ratio of the fluctuation and mean dissipation 
rate integrals. Here, maximum d is explored in Couette flow to test its generality as 
a statistical stability criterion for turbulent shear flows. The optimal flow exhibits a 
logarithmic law but does not have a velocity defect law. A decreasing velocity defect 
is predicted for Reynolds numbers up to  30000. This prediction is shown to be 
supported by the existing data, which are limited to  Reynolds numbers less than 
20 000. 

1. Introduction 
A recent study established that maximum ‘efficiency ’ leads to the observed scaling 

laws in the mean velocity of turbulent Poiseuille flow, whereas ‘nearby’ moments do 
not scale like the data (Malkus & Smith 1989, hereinafter referred to as I). The 
efficiency function is defined as 

where C, is a drag coefficient and I is the ratio of the flow-averaged fluctuation 
dissipation rate and the flow-averaged mean dissipation rate. The present study 
explores maximum efficiency in turbulent Couette flow. 

This work is a further step towards the goal of establishing a statistical stability 
criterion for turbulent shear flows. The approach taken is based on ideas introduced 
by Malkus (1954, 1956), and will be referred to  as ‘optimal theory’. I n  optimal 
theory, the selection of a turbulent flow field is achieved by optimization of a flow 
quantity subject to constraints derived from the Navier-Stokes equations. Such an 
optimization problem provides a complete, mechanistic idealization of the flow, 
whose statistical properties can be compared with experimental observations and 
direct numerical simulations. 

The constraints of the optimization problem define a vector space which includes 
the solutions of the Navier-Stokes equations. The vector space is reduced with the 
addition of more constraints. If enough constraints are incorporated, the space of 
admissible vectors will be almost as small as the space defined by the Navier-Stokes 
equations. In that case, optimization of any function will result in a ‘flow’ with 
characteristics of realized turbulence. With a large number of constraints, however, 
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the optimization problem becomes almost as difficult as solving the Navier-Stokes 
equations. A useful optimal theory isolates a flow quantity that reflects the essential 
physics with only a few constraints. 

The solutions of optimization problems are ordered and smooth. This may seem 
incompatible with the intermittency in turbulence and the more conventional closure 
theories that model small-scale disorder. However, the proposal is not that optimal 
theory can be a final picture of turbulence. Rather, we seek a satisfying first 
description in terms of a physical principle. The optimal flow will hopefully capture 
ordered features of turbulent flows, such as the streaks observed in experiments and 
numerical calculations of wall-bounded shear flows. 

Subsequent to the introduction of optimal theory, reviews by Howard (1972), and 
later Busse (1978), emphasized the mathematical problem of bounding flow 
quantities. They developed techniques to  bound the transport of heat, mass or 
momentum in turbulent flows. 

I n  the context of turbulent convection, Busse (19693) found a multiple boundary- 
layer solution for the fluctuating field of maximum heat transport. The multiple 
boundary-layer solution is a consequence of continuity and the two dissipation rate 
integrals of the Boussinesq equations. Its structure of nested rolls provided insight 
into the physical mechanism responsible for efficient heat transport. Eddies of larger 
and larger scale continue the transfer of heat away from the boundary. 

Busse then considered the maximum transport solutions of wall-bounded shear 
flows (Busse 1970). He showed that the continuity condition and the dissipation rate 
integral of the Navier-Stokes equations also lead to a structure of nested rolls. The 
axis of the rolls is in the downstream direction. At any given Reynolds number, the 
smallest roll defines the size of the viscous boundary layer. An upper bound on 
transport is associated with a lower bound on the size of the boundary layer. 

The upper bounds on mass and momentum transport, subject only to the 
constriants of continuity and the dissipation rate integral, are much higher than the 
realized values. For example, the multi-wavenumber, optimal field for pipe flow 
yields a drag coefficient which is 20 times that observed at a Reynolds number of 10’. 
The difference is increasing with Reynolds number. 

The maximum transport fields do not exhibit observed scaling laws. There are two 
reasons why the maximum transport fields bear little resemblance to  turbulent shear 
flows. First, shear turbulence apparently does not tend to maximize transport. 
Second, the optimal flows are insufficiently constrained. For an optimal flow to 
approach the realized flow, the bounding quantity must adequately approximate 
nature’s way of choosing between solutions. The constraints must capture the local 
physics of (solutions to) the equations of motion. 

Here we return to the search for a criterion governing shear flow stability, and to 
the isolation of a flow quantity that exhibits observed scaling laws with only a few 
simple constraints. As stability is meant in the statistical sense, the optimal problem 
is formulated in terms of mean quantities (see I) .  For Poiseuille flow, only the mean 
velocity associated with maximum &‘ exhibits both a logarithmic law and a velocity 
defect law. Apparently, the important global dynamics of turbulent Poiseuille flow 
are represented in the eficiency function. 

Section 2 of this paper reviews the optimization problem for the mean. The 
specifics of its application to Couette flow are given in $3. Section 4 describes in detail 
the maximum4 solution. A qualitative and quantitative comparison with 
experimental observations is made in $5.  Implications and future work are discussed 
in $6. 
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2. A problem for the mean flow 
2.1. The optimization scheme 

Our investigation is of statistically steady, parallel shear flows, homogeneous in the 
horizontal directions. For these flows, the primary goal is to predict variation in the 
vertical direction. The mean flow is thus defined as the average in the x-, y- and t- 
directions. A formal problem for the mean, introduced in I, is the optimization of a 
mean field moment subject to:  

(i) boundary conditions for the mean ; 
(ii) the existence of a viscous boundary layer whose scale is a lower bound on the 

(iii) the inviscid, linear stability condition a t  all larger scales. 
observed scale ; 

The optimization principle selects a profile from among those defined by constraints 
(i)-(iii). 

The emphasis of this study is on qualitative agreement with the data. Qualitative 
agreement (or disagreement) between the deduced and realized mean flows depends 
primarily on the choice of moment. The main question addressed is ‘Does the mean 
velocity deduced for maximum d have the structural features and scaling observed 
in turbulent Couette flow, while adjacent moments fail to scale like the da ta?’  The 
quantitative features of the optimal flow are controlled by the size of the boundary 
layer. Section 4.3 shows how quantitative agreement can be approached. 

The separation of the qualitative and quantitative features of optimal flows is 
clearly demonstrated by the study of Poiseuille flow in I. The optimal mean velocity 
profiles for a variety of mean field moments were found, keeping the constraints 
fixed. All of the optimal flows are an order of magnitude too large because the bound 
on the viscous boundary-layer scale is an order of magnitude too low. The mean of 
maximum d agrees qualitatively with the data, despite insufficient constraints. 
Optimization of other moments fails even a t  the qualitative level. 

2.2. Motivation for the constraints 
The formal upper-bound problems solved by Howard (1972) and Busse (1970) select 
a value for the scale of the viscous boundary layer of the maximum transport 
solutions. As mentioned in the Introduction, an upper bound on transport is 
associated with a lower bound on the realized viscous boundary-layer scale. This 
lower bound is a consequence of the dissipation rate integral, the only viscous 
constraint used in the upper-bound problems of Howard and Busse. 

Here we use the Busse-Howard value of the boundary-layer scale. Comparison 
with Busse’s maximum transport solutions are then possible. It should be emphasized 
that we are proposing a statistical theory based on an optimization principle, rather 
than a mathematically rigorous upper bound. However, by borrowing the 
Busse-Howard lower bound for the viscous boundary-layer scale, our maximal 
statistics will also bound the realized turbulent statistics from above. 

All larger scales must also be constrained for the problem to  be bounded. We take 
the view that the important interior dynamics are inviscid. The interior mean, 
maintained by infrequent ‘bursts’, is a t  least stable to linear disturbances. We 
therefore constrain the flow with Fjrartoft’s condition for inviscid, linear stability 
(Drazin & Reid 1981). Arnol’d (1965) showed that Fjrartoft’s condition also implies 
stability of steady, two-dimensional, inviscid flow to small finite-amplitude 
disturbances. Also note that Fjrartoft’s condition is satisfied by Busse’s maximum 
transport solutions. Finally, Fjertoft’s stability condition is satisfied by observed 
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shear turbulence, though it is not yet a proven consequcnce of the full Xavier-Stokes 
equations. This ensures that the realized solution lies within the vector space defined 
by the constraints. 

2.3. Improving the lower bound on the viscous boundary-layer scale 
As the only viscous constraint in the upper-bound problems solved by Howard (1972) 
and Busse (1969a, 1970), the dissipation rate integral of the Savier-Stokes equations 
provides a poor lower bound on the viscous boundary-layer scale, and thus poor 
quantitative agreement with realized turbulent statistics. The dissipation rate 
integral is a statement of the global energy balance imposed by the Navier4tokes 
equations. I n  retrospect, i t  should be no surprise that approximate equations based 
largely on overall energy balance are far from satisfactory. Analysis shows that the 
integral statement of energy balance does not capture the relevant stability 
mechanism at  work in shear flows (Joseph 1976). Many studies have revealed the 
importance of vorticity to shear stability (Bayly, Orszag & Herbert 1988). A 
constraint reflecting vorticity balance is likely to improve the bound on the viscous 
boundary-layer scale and bring the quantitative aspects of optimal statistics much 
closer to the observations. 

3. Application to Couette flow 

The incompressible Navier-Stokes equations are 

3.1. The basic equations 

av 1 
- + ( v . V ) v  = --vvp+vv*v, 
at P 

v-v = 0, 

where v is the velocity, P is the pressure, p is the density and v is the kinematic 
viscosity. The downstream, spanwise and vertical directions are x, y and 2, 
respectively. Plane Couette flow is induced by differential motion of infinite parallel 
plates. The plates move with equal speeds in opposite directions for convenience, 
v = 

For statistically steady Couette flow, an average in the homogeneous directions, x, 
on z = +h. 

y and t ,  of (3.1) gives d W  duw 
dz2 dz 

v- = - 

where the overbar denotes the (x, y, t)-average and -8 = U ( z )  i. The downstream and 
vertical components of I( E v--8 are u and w, respectively. 

An expression for the mean shear is found by inkgration of (3.2), 
d U 
dz 

v- = uw+ro, (3.3) 

where uw is the Reynolds stress and 70 is the stress per unit mass a t  the wall. 
For consistency with the engineering data all velocities will be non-dimensionalized 

with the friction velocity, U, = 78, and all lengths with the half-channel width h. The 
notation v+ = v / U ,  is used to  distinguish the non-dimensional form of the velocity 
and from now on - 1 < z < 1. Equation (3.3) is then written 

d u+ 
dz - = R, m+ + R,, (3.4) 

where TED+ = im/l7: and R, = U, h / u  is the friction Reynolds number. 
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The rigid boundary conditions are u+ = W +  = dw+/dz = 0 at z = & 1.  The boundary 
conditions on u+ and (3.2) determine the boundary conditions on U+, 

dU+ -R,, U+=+- R at z = f l ,  
- 0 ,  -- 

d3U+ d2U+ 
- 

dz3 dz2 dz - R, 
(3.5) 

where R = U,,,, h/v is the Reynolds number. Multiplication of (3.4) by R,? dU+/dz, 
followed by integration using the boundary conditions ( 3 4 ,  gives the dissipation 
rate equation, 

R,?( (x) ) -R: (Zm+)  dU+ = RR,?. 

Here () indicates an average over 2. The flow-averaged mean dissipation 
rate is R,?( (dU+/dz)2) and the flow-averaged fluctuation dissipation rate is 
-R;(m+dU+/dz). Their sum is equal to the total dissipation rate, RR;. 

3.2. The wavenumber expansion 

Fourier analysis of the Howard-Busse optimal mean flows provides an abrupt cutoff 
wavenumber, motivating the use of a finite series expansion for the mean (Busse 
1969a). The cutoff wavenumber will be estimated from above in the following to 
preserve the upper bound character of the analysis. In  real flows, one expects 
exponential decay of the expansion coefficients for wavenumbers beyond the cutoff. 

Most series expansions are inconvenient for this problem because Fjlartoft’s 
stability condition is local, and must be satisfied at  every point in the flow. For most 
series, for example Fourier or Chebyshev, this implies a number of constraints equal 
to  the highest wavenumber. This difficulty is avoided if the expansion is chosen to 
automatically satisfy Fjrartoft’s condition (Malkus 1979). 

Fjlartoft’s condition for inviscid, linear stability is 

d2U+ 
,,cu+-u:, 2 0 (-1 < z < l ) ,  (3.7) 

where U i  = U+(z,) and d2Ui/dz2 = 0. Fjlartoft’s condition and antisymmetry imply 
that U+ and d2U+/dz2 change sign only at  z = 0. A convenient representation of the 
mean is therefore 

-=f(nz)I*I ( - 1  < z <  l) ,  
d2U+ 
dz2 

together with the restriction 
dU+ - 2 0  at z = O ,  
dz (3.9) 

where the function f is antisymmetric about z = 0 and negative in -1 < z < 0. In 
addition, f must have a wavelength of at  least 27c so that U+ changes sign only at  
z = 0. Inflexions of the wrong sign are excluded by the restriction on the slope at 
z = 0, relation (3.9). To preserve the truncation one must also require that f is 
expressible as a finite Fourier sine series. 

The series I is defined by 
k0 

I = C Ikeik$, 
k-0 

(3.10) 
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where $/7c = z + 1, the I ,  are amplitudes and k = 0 , 1 , 2 , .  . . , k, is the wavenumber. 
The double series 1*1 is called a Fejer series. Fejkr showed that 1*1 is a complete 
representation of an everywhere-positive definite function when k, + CO. 

By completeness, the results of any maximization problem should be independent 
off for large k, except near $ = 7c ( z  = 0). The rate at which U+ approaches zero at 
4 = 7c is fixed by f. The choice f = sin (4 - 7c) forces U+ c,($ - 7c) + c2($ - 7r)3 for 
$ - 7c, where c1 and c2 are constants; f = sin (4-x) allows for a finite slope through 
the centre. 

To summarize, the boundary conditions for the mean are given by (3.5) ; both the 
existence of a boundary layer and linear inviscid stability are guaranteed by 
(3.8)-(3.10). I n  $3.3, the boundary-layer scale is expressed in terms of the highest 
Fej6r wavenumber. In  $3.4, the boundary conditions are used to derive three 
relations among the I,, which are constraints on the optimization problem in Fej6r 
space. 

3.3. The boundary-layer scale 

The goal of this section is to  establish a relation between the stress, R,2, and the 
highest wavenumber of the fluctuations, k,. With anticipation that this relation can 
be found with an appropriate stability problem, we define a stability parameter for 
the viscous boundary layer, R, = R,(R,, k,). 

In  the laminar sublayer, the Reynolds stress is small and the mean is 
approximately linear. Near the lower boundary 4 = 0, using boundary conditions 

(3.11) 

where z+ is the traditional boundary-layer variable, z+ = R,$/n. The interval in 
which the linear approximation to (3.11) is valid defines the lengthscale of the 
laminar sublayer, ztv/U, .  The Reynolds number of the sublayer, based on the 
velocity difference across the interval and the full width, is given in wall units as 

R, = ( z : ) ~ .  (3.12) 

The Reynolds number R, has the critical value corresponding to marginal, finite- 
amplitude stability of the boundary layer. 

As in I, we take z t  = U , / k ,  corresponding to twice the Fcjdr wavelength 4 = 2/k,. 
Thus (3.12) becomes 

2 

R, = a:($) . (3.13) 

Using (3.13), one may estimate R, from the maximum transport theories of Howard 
and Busse. The height of Busse's smallest roll is Z+ = 3.15 (Busse 1970). Taking the 
height of the smallest roll to be one Fourier wavelength of the fluctuating field in the 
vertical direction gives 3.15 = R72/k,, which in turn leads to R, = 4(3.15)2 = 39.69. 
Since z+ = 3.15 is a conservative lower bound on the realized height of the boundary 
layer, R, = 39.69 is a significant underestimate of the realized R,. In  the present 
formulation, R, should be regarded as a bound from below on the boundary-layer 
thickness. 

The profiles found using (3.13) are consistent, indicating that z,' = 4R,/k, is a good 
estimate of the sublayer height in terms of the Feje'r wavelength. For example, for 
R, = 39.69, the end of the boundary layer is a t  roughly z t  = 2 x 3.15 = 6.3 (figure 2). 

With k, related to R, (fixed) and R, by (3.13), the two parameters characterizing 
the flow are as usual. They are the Reynolds number, R, and the stress, B,2 (non- 
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dimensionalized). Only one of the two is free. One can maximize d as a function of 
R,, for fixed R, or as a function of H, for fixed R,. The former problem is presented 
here. The latter problem was solved to establish the Reynolds-number dependence 
of 8. 

3.4. The constraints on the I ,  
In this section, the boundary conditions (3.5) are used to derive expressions for the 
Reynolds number and the restriction on the slope, (3.9), in terms of the I ,  and R,. An 
additional relation among the I ,  is imposed by the third-derivative boundary 
conditions. 

The second derivative of the mean is defined by 

(3.14) 

The I ,  are real because I*I is symmetric. Integration of (3.14), together with the first- 
derivative boundary conditions of (3.5), gives the first derivative of the mean, 

I ,  Ii - 2  [ ~ ~ ~ ( ( k - j - l ) $ ) - l ] + R , .  (3.15) 
k - j + 1 2 K ( k - j - 1 )  

From now on a single summation symbol will indicate summation over all indices 
from 0 to ko unless otherwise stated. 

The mean velocity itself is determined by integration of (3.15), using the boundary 
condition U f  = -R/R, a t  4 = 0, 

The condition Ui = R/R, at q5 = 2n must also be satisfied, the result being 

(3.17) 

Equation (3.17) is the Reynolds number in terms of the I ,  (the mean velocity) and 
R,. It is one of three constraints on the I ,  imposed in the optimization problem. 

The slope restriction (3.9), needed to satisfy Fjnrtoft's condition, is found from 
(3.15) a t  4 = K, 

Relation (3.18) is a second constraint on the I, .  
The only unused elements from the maximization problem in real space are the 

boundary conditions on the third derivative of the mean. Setting x 2  d3U+/dd3 = 0 a t  
either boundary gives the third constraint on the I,, 

ko 
C I ,  = 0. 
0 

(3.19) 



516 L .  M .  Smith 

Note that the boundary conditions on the second derivative of the mean are 
identically satisfied by the representation (3.14). 

Once we express d in terms of Ik and R,, we will be ready to find its maximum 
constrained by the boundary conditions, a boundary layer of given scale, and 
inviscid stability in the interior. The problem is then to find the optimal R, and I ,  
spectrum at fixed R. 

4. The optimal solution in Fejer space 
4.1.  The Euler-Lagrange equations 

A search for the maximum of the efficiency function is motivated by the results of 
I. The eficiency function is the product of a drag coefficient, CD, and the ratio of the 
fluctuation and mean dissipation rate integrals, I. The definitions of C, and I are 

Using the dissipation rate equation, (3.6), d may be written as 

(4.3) 

An expression for (p2)  is found by squaring (3.15) and averaging over the channel, 

+ c  Ik1jIm'n(2Sk-j ,  ( 2n)2 (k - j+  n-m-8k- j+ l ,  1 ) 2  n-m-1)  . (4.4) 
k - j + - l  

R, is expressed as a function of k,  by (3.13). 
To maximize d as a function of R,, for fixed R ,  one can first maximize d for fixed 

k, and fixed R.  Then one must find the k,  that  corresponds to the absolute maximum 
of 8. There will be some error in the optimal value of the stress due to  the discreteness 
of k,. At Reynolds numbers of interest, however, k,  is large enough to make this error 
negligible. 

For fixed k,  and fixed R ,  a maximum of 8' is a minimum of ( p 2 )  by (4.3). The 
Lagrangian for minimum (p2) ,  subject to the boundary conditions, a boundary- 
layer scale of 4/k ,  = RiIR,, and inviscid stability in the interior, is 

I k I j I m ' n  'k-j-19 n-m+l 

L(R, k,, b)  = (K)2- @ k o  k-j+1 c ( 2 7 ~ ) ~ ( k - j -  1)2 
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where A,, A,  and A, are Lagrange multipliers. The parameter b2 is introduced to make 
the condition on the slope a t  the centreline, (3.18), an equality constraint. The 
critical boundary Reynolds number is the lower bound R,  = 39.69. 

The Euler-Lagrange equations describing the cxtrema of € ( R ,  k,, b )  result from 
variation of the Lagrangian (4.5). Variation with respect to the I ,  gives 

where the summations are over all indices except k .  Variation with respect to the 
Lagrange multipliers recovers the constraint equations ( 3 . 1 7 ) ,  (3.18) and (3.19). The 
Euler-Lagrange equations are k , + 4  equations for { I k :  k = 0,1,2, .  . . , k,},  A,, A, and 
A, in terms of R ,  k ,  and b.  They are nonlinear, algebraic equations, solved using 
Newton's met hod. 

The degree of this system can be reduced by a factor of two using the 
antisymmetry condition I ,  = -I,,&, which holds for the solution corresponding to 
the absolute maximum of b(R, k,, 6 ) .  (See 54.2.) The optimal b is found to be zero a t  
all R.  The optimal k, is a monotonically increasing function of R. 

4.2. The 1, spectra 
This section describes how selected information about the solutions of the 
Euler-Lagrange equations is used to  track the absolute maximum of €(R) .  

There are k, relative maxima of the Eulcr-Lagrange equations (4.6) and 
(3.17)-(3.19). For the purpose of tracking the absolute maximum of b(R,  k , ) ,  we 
define {bn(R, k,) : n = 1,2, .  . . , k,) as the relative maxima. The subscript n denotes the 
relation of a maximum to its family, b,(R, k,) being the absolute maximum. It is also 
helpful to define 9 n ( k , R ,  k,) to  be the continuous analogue of the I ,  spectrum 
corresponding to  &,,(R,k,). The negative of the I ,  spectrum of &(R,k,) is also a 
solution to the Euler-Lagrange equations with the same maximum and mean profile. 
This is an example of the non-uniqueness of the Fcj6r representation. 

The I ,  spectrum of b1(R, k,) satisfies the antisymmetry condition I ,  = -I,,-,. The 
forms of the Ik spectra alternate between antisymmetric and symmetric with 
increasing n. The relative maximum bn(B, k,)  is also characterized by the number of 
zeros o f Y n ( k , R ,  k , ) .  The number of zeros in 9 n ( k , R ,  k,)  is n. For example, 9 , ( k , R ,  k,) 
has one zero a t  k = i k , .  

To find the maximum € ( R ) ,  we first solve the Euler-Lagrange equations for 
€,(R, k,) and then optimize over k,. At each k,, we need only look for the I ,  spectrum 
that is antisymmetric, with one zero a t  k = Bk, in X1(k, R,  k , ) .  

The spectra of maximum b ( R )  consist of two sets of points that  look roughly 
like points from two sine functions. The I ,  spectrum for €(700) is shown in figure 1 
( k ,  = 93 is the optimal value of k,  for R = 700). Unfortunately, no satisfactory 
approximation in terms of sine functions was found that preserves all the 
characteristics of the maximum-€ mean. 

At a given R ,  the distance between the sets, together with the magnitude of Iko, 
determines the size of the interior of the mean velocity. The larger they are, the 
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FIGURE 1 .  The I ,  spectrum for the absolute maximum of d at R = 700 (k, = 93). 
k l k ,  

bigger the interior of the mean profile. These two features arc equivalent to the size 
of the jumps a t  the ends of the Ik spectra for optimal Poiseuille flows (see I). 

5. The mean flow of maximum efficiency 8 
5.1. The optimal profile 

The mean flow associated with maximum 6 is shown in figure 2 as a function of 
Reynolds number, where V' = U&,,+ U+. Based on R, = 39.69, the Reynolds 
numbers of the profiles in figure 2 increase from 100 to 1600 in increments of 100. In 
figures 2 and 3, an arrow indicates the direction of increasing Reynolds number. An 
obvious feature is the extended linear region on the semi-log plot, which develops 
after an initial transition period. There is a slight downward drift of the log layer as 
the Reynolds number increases. This Reynolds-number dependence is no more than, 
and perhaps consistent with, the observations. For all practical purposes, the slopes 
of both the maximum-€ flow and realized turbulent Couette flow are constant. For 
the maximum € with R, = 39.69, the value of the log slope is close to 1.0 and the 
intercept is approximately 2.4. 

The other striking feature is the decreasing interior. First there is an initial range 
of R in which the profile seems to be approaching a stable form. The interior is 
decreasing in this stage, which is up to  R = 400. Although not emphasized here, the 
upper-bound theory gives a detailed prediction for the evolution of the mean in the 
transition region between laminar flow and fully developed turbulence. 

Following the transition period, the interior stays constant over intervals of 
Reynolds number before decreasing in discrete steps. Each higher Reynolds-number 
range is longer than the last. The lcngth of the interval is a constant factor, aRC, 
multiplied by ( p  + 2), where p numbers the stable interior forms. For R, = 39.69, the 
value of aRC is 100. The first stable form appears a t  R = 400. The next stable interior 
forms are first seen a t  R = 700, 1100 and 1600, corresponding to p = 2, 3 and 4. The 
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FTGUILE 2. The maximum4 profiles from transitional to fully developed flow. Based on R, = 39.69, 
R increases from 100 to 1600 in increments of 100. The values of k, are 16, 29, 42, 55, 67, 79, 93, 
105, 117, 129, 143, 155, 167, 179, 191 and 205, respectively. 

first interval of R is 36,,, the second 4aRC and the third 56,,. An ordered, discrete 
convergence is suggested. Unfortunately we did not have the computational power 
to  explore higher Reynolds numbers. However, we have reached Reynolds numbers 
near 30000 based on an experimental R, (see $5.3). 

A velocity defect plot (figure 3) quantifies the behaviour of the interior. The values 
at 0.75 of the half-channel width for the first four stable interior forms (based on the 
average) are 0.827, 0.765,0.720 and 0.683. The increments are 0.062,0.045 and 0.037 
and are decreasing. A decreasing interior and a logarithmic law together imply that 
the logarithmic layer is a smaller percentage of the (unscaled) flow with increasing 
Reynolds number. 

Also notable is the fact that  the slope of the mean decreases to zero at the 
centreline of the channel. The consistency (or inconsistency) of the zero slope with 
the data is addressed in $5.3. 

5.2. Comparison with the maximum-b Poiseuille flow 
It is informative to compare, at fixed R,, the maximum-b mean profiles for Couette 
and Poiseuille flows (see I). The boundary regions of both flows are dominated by the 
strong shear at the wall and are almost identical. However, the logarithmic slope for 
Couette flow is only 70% of that for Poiseuille flow. The log slope is observed to be 
roughly the same in realized turbulent Couette and Poiseuille flows. One anticipates 
that  a larger R, will be necessary for the maximum-d flow to approach the data than 
was found for Poiseuille flow. 

Section 5.3 shows that for Couette flow a realistic estimate is R, x 800, while for 
Poiseuille flow R, x 480 was found in I. The heights corresponding to  a smallest roll 
are approximately zf = 13.5 for Couette flow and z+ = 11 for Poiseuille flow. 

The interior regions of the maximum-d Couette and Poiseuille profiles are quite 



520 L .  M .  Smith 

4 

VLax - V' 

3 

2 

1 

L _I 

0 ,  1 
1 + z  

FIGURE 3. The velocity defect of the maximum-b flow decreases in steps. The steps are smaller with 
increasing R suggesting an ordered, discrete convergence as R z 00. The values of R and k, are as 
in figure 2. 

different. A velocity defect law is found for Poiseuille flow. That is, the velocity defect 
is quickly asymptotic. The difference is consistent with the physics of the two flows. 
Their opposing symmetries provide a contrast in behaviour, on average, in the 
centre. In Couette flow, the mean shear and correlation coefficient, -m/(u,,, 
wrms), are observed to be almost uniform in the central 40% of the channel. 
Therefore so are quantities such as R ; / ~ ~ Z W  and R,2P2. In  Poiseuille flow, all of these 
quantities go rapidly to zero in the central region. 

5.3.  Quantitative comparison with the data 

If maximum 13 is approached by the fluid, the upper bound mean flows provide 
testible predictions, such as continued decrease of thc velocity defect. The purpose 
of this section is a critical assessment of maximum d as a statistical stability criterion 
in Couette flow. 

All available data for turbulent Couette flow is restricted to R < 20000 (based on 
the half-channel width and half of the maximum relative velocity). A recent study 
by El Telbany & Reynolds (1982) determined a logarit,hmic slope of 5.87 and an 
intercept of 5.2 (figure 5). These values are significantly different from those 
established by earlier experimenters. Robertson & Johnson (1970) found 5.6 and 5.6, 
and Reichardt (1959) gave 5.75 for the slope and 5.5 for the intercept. The earlier 
values are essentially the same as in Poiseuille flow. We use the data recorded by El 
Telbany & Reynolds because it is more recent, and because it is presented in velocity 
defect form. Their velocity defect data, reproduced in figure 4, are the most 
important evidence in support of thc maximum-b hypothesis. 

The observed velocity defect is decreasing, apparently in increments similar to the 
maximum-b flow. The velocity defects a t  0.75 of the half-channel width are about 4.9 
at  R = 9500,4.1 a t  R = 12640 and 14250 and 3.8 at  R = 18960. From only four data 
points, a pattern to  the decrease is only speculative. 
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FIGURE 4. The observed velocity defect: 0, R = 9500; A, R = 12640; x , R = 14250; 
0 ,  R = 18960. Reproduced from El Telbany & Reynolds (1982). 
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FIGURE 5. The maximum-& flow numerically determined using R, = 800 (solid line) and the 
data of El Telbany & Reynolds (1982) ( x ), both at R = 18000. 

A quantitative comparison with the data is made using a value for R, with which 
the optimal mean approaches the data. One must be careful that this ‘experimental’ 
value of R, still provides an upper bound on 8. Figure 5 displays the data and the 
maximum-& flow numerically calculated using R, = 800 (k, = 117). The Reynolds 
numbers of both are about 18000. The slope of the theoretical curve is 5.8 and its 
intercept is 7.6. As in Poiseuille flow, the experimental profile has a more gradual 
transition from laminar boundary layer to logarithmic sublayer, a higher slope and 
a larger interior. 
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For R, = 800, the value SRc = 2015 defines the ordered sequence of transitions in 
the mean profile. The first interval of stable interior begins a t  R = 10075 and has 
length 38,; The second and third stable forms appear a t  R = 16 120 and R = 24 180, 
and persist for 4SRC and 56,,, respectively. The highest Reynolds number achieved is 
R = 32250 and marks the beginning of a fourth region of stable interior form. The 
theoretical velocity defects were recalculated using R, = 800. As expected from 
figure 5 ,  they are low compared to the data. The velocity defects a t  0.75 of the half- 
channel width are 3.71, 3.43, 3.23 and 3.07, respectively, in the four regions. Further 
decrease in the realized velocity defect is predicted, a t  least up to R = 30000. 

Finally the issue of the local slope a t  the centre must be addressed. All of the 
experimenters to date have reported a finite slope a t  the centreline. Reichardt's data 
are plotted to suggest a normalized slope of 0.25 a t  li = 1450 and 0.20 at  R = 17000. 
The normalization is with respect to  the maximum velocity. His data points, 
however, are quite far from the centreline. 

El Telbany & Reynolds also report a finite slope at the centreline, but it is 
decreasing with increasing R (figure 5 ) .  Their values of the normalized slope are 0.26 
at  R = 9500, 0.23 a t  R = 12640, 0.22 at  R = 14250 and 0.19 a t  R = 18960. These 
values are consistent with Reichardt's. Their data points are closer to the centre and 
therefore more convincing. The local slope at  the centreline may decrease to zero a t  
high enough Reynolds number, which would perhaps indicate that maximum d is an 
asymptotic state. 

What is most significant is the global behaviour of the interior flow: both the 
experiments and the maximum-b flow suggest decreasing shear in a finite central 
region as the Reynolds number increases. Numerical calculations at low Reynolds 
numbers also show a decreasing interior shear with Reynolds number (Lee 1989). 
Thus there is evidence that realized turbulent Couette flow moves closer to  a state 
of maximum-b as R increases. 

5.4. Adjacent integrals with non-zero slope at the centre 

Among moments of the class {R,2"I(R) : n 2 0} (a corresponds to n = l ) ,  there is none 
whose maximization leads to a logarithmic law, a decreasing velocity defect for 
R < 18000, and a finite slope at  the centreline. 

An exponent greater than 2 results in a more flat-topped profile with a more 
rapidly vanishing velocity defect. All exponents greater than 2 result in zero slope a t  
the centre. 

An exponent less than 2 yields a more linear profile. As n decreases, the curvature 
of the mean near the centre decreases until it is linear with finite slope. However, for 
all n which lead to a finite slope through the centre, the velocity defect is increasing. 
In fact, even for n = $, which still exhibits a curved inflexion point a t  the centre, the 
velocity defect is increasing. 

The observed velocity defect may not continue to decrease, but it probably does 
not begin to increase. Among the maxima of {R;"I(R) ,n  2 0}, even a constant 
velocity defect is associated with a zero local slope at the centre. 

5.5. Discussion 

There is some disagreement with respect to Reichardt's (1959) data. Busse suggests 
that Reichardt's data is asymptoting to a of the shear of the laminar solution (Busse 
1970). Busse's maximum transport solution exhibits a ':'-law outside the viscous 
boundary layer. However, we estimate, from the same data, that the interior shear 
is already about 4 of its laminar valuc at  R = 1450. The shear appears to be about 5 
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of its laminar value at  R = 17000, the highest Reynolds number achieved in 
Reichardt’s study. The data of El Telbany & Reynolds also shows a shear smaller 
than a of the laminar value for Reynolds numbers above 10000. 

All other evidence is against maximum transport as a statistical stability criterion 
for shear flows. Using the present formalism, the maximum transport means are 
‘flat-topped’ for both Poiseuille and Couette flows; there is no log law or velocity 
defect law in either flow. Neither are log or velocity defect laws found from Busse’s 
formalism (Busse 1970; I). The fact that the maximum transport solutions do not 
exhibit the well-established laws of Poiseuille flow sheds doubt on their relevance to  
Couette flow. It is unlikely that the two flows are governed by different principles. 

On the other hand, we find that maximum d predicts both a log law and a velocity 
defect law in Poiseuille flow, and a log law in Couette flow. The decreasing velocity 
defect of maximum & in Couette flow would seem at first to question its generality 
as a statistical stability criterion for shear flows. However, the data of El Telbany & 
Reynolds shows a decreasing velocity defect and a decreasing slope through the 
centreline for R as high as 18000. The zero slope through the centreline of maximum 
€ is not observed a t  low R, but may be approached a t  high R. Experiments at high 
Reynolds numbers are needed to establish the asymptotic behaviour of turbulent 
Couette flow and thereby to determine the limitations of maximum 8. 

6. Conclusions and prospects 
An upper bound of the efficiency function, 8, gives the correct scaling laws in 

turbulent Poiseuille flow. The maximum-& flow exhibits both a logarithmic law and 
a velocity defect law. The success of maximum d to qualitatively describe turbulent 
Poiseuille flow suggests an investigation of its generality. 

Couette flow is thought of as the simplest example of the shear mechanism. 
Unfortunately, because experiments are difficult, the data on turbulent Couette flow 
are scarce and restricted to  R < 20000. All available data exhibit a logarithmic law, 
though the value of the slope varies with experiment. The presumption has been that 
there is also a velocity defect law in turbulent Couette flow. The data of El  Telbany 
& Reynolds, however, show a decreasing velocity defect and a decreasing slope at the 
centreline. That the two flows scale differently in the interior is consistent with the 
constraints imposed by their symmetries. 

Maximum d in Couette flow predicts a logarithmic law, a decreasing velocity defect 
and a slope of zero at the centreline. High-Reynolds-number experiments and/or 
numerical data are needed to convincingly establish the behaviour of the velocity 
defect in Couette flow. They will strengthen or weaken the hypothesis that maximum 
8 is a statistical stability criterion for both Couette and Poiseuille flows. 

It is possible that maximum & is generalizable to other kinds of turbulence as well. 
For example, maximum transport and maximum & may lead to  the same results for 
thermal convection a t  high Rayleigh numbers, Ra. For fixed Ra, maximum 
transport is equivalent to maximum stress, R,2, while maximum & is equivalent to 
maximum R;I. Owing to the different inviscid stability conditions for shear and 
convective flows, it is plausible that I is asymptotically approaching a constant in 
convection whereas i t  is growing logarithmically in shear flow. 

Turbulent flows driven by both shear and buoyancy-like forces are of interest to 
a large audience. They have meteorological, geophysical and engineering importance. 
They also have a ‘ simple ’ laboratory example : Taylor-Couette flow between 
rotating cylinders. I n  the case of a narrow gap between the cylinders, the flow 
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approaches flow between parallel plates. If the outer cylinder rotates faster than the 
inner cylinder, the flow is centrifugally stabilized. I n  the reverse situation the flow 
is centrifugally destabilized. In unstable Taylor-Couette flow, at high enough 
Reynolds numbers, both shear and centrifugal forces are comparable. 

Nickerson ( 1969) considered low-Reynolds-number, centrifugally unstable 
Taylor-Couette flow. He found that maximum stress is an adequate first descrip- 
tion of the physics. Again one might ask if the results of maximum d would be 
significantly different. 

The data for high-Reynolds-number Taylor-Couette flow present another 
challenge to the hypothesis that maximum d is a general statistical stability 
criterion. Although Smith & Townsend (1982) state that they find a von K&rm&n 
logarithmic slope, their graphs indicate otherwise. The slope appears close to 1.5, not 
2.44 (base e). Although our predictions are as yet qualitative, the maximum-& flow 
may be indicative. 

The methods here may not be directly applicable to  more complicated turbulent 
flows, but i t  is clear that  simplified upper-bound schemes can be constructed. Flow 
quantities can then be isolated whose upper bounds reflect the average properties of 
the turbulence. Studies of flows such as Taylor-Couette flow will improve our 
techniques, force a better understanding of the stability processes, and determine the 
limitations of maximum 8. 

Given an upper-bound flow that is qualitatively like an observed turbulent flow, 
quantitative difference can be removed with more constraints. I n  parallel shear 
flows, the vorticity dissipation rate integral alters the downstream-roll structure 
predicted by the energy dissipation rate integral (I ; Malkus 1968). Such a mechanistic 
change will probably be accompanied by a significant quantitative improvement. 
Finally, disorder and time dependence can be introduced with a perturbative 
analysis of the upper-bound solutions (I). Upper-bound theory is thus a step towards 
a satisfactory and completely deductive description of shear turbulence and, we 
hope, of more complicated kinds of turbulence as well. 

I am deeply indebted to Professor W. V. R. Malkus for the teaching and guidance 
he provided through the completion of this work. I am grateful to  Fabian Waleffe for 
his advice with respect to the numerics involved, and for helpful comments on several 
drafts of this work. Finally, I would like to thank the referees for their very valuable 
reviews of the manuscript. This work was supported by the National Science 
Foundation under grant ATM86-11727. The computations were done on the Sun 
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